T8 °6-7-'8 '€ PUBIOd ‘MEPOIN SUBRNSHEIS
Jo Bupsapy uwesdomg a1 je pajussaxd uwesq sey soded smp) Jo uoisias snoaid v |

943 P[BO POYIAW € PIuBISop oAwY BINJN PUBR OBY “jUBI JUSIOYOP Jo wigpqod
S} SWOIA0 OF, (1'T) B[nuiIo] WOy (payIpous) oy} eia paurelqo aq 1e8uof
ou ued FTH B PW 10U S ()W S ()W wonpuod Y1 ‘1vAdamoy I
(sasoaur- ) sosioaul pozieiousd £q peoejdal are sosioaur Sunnoso
A g S[uer [y weyl ssof sey Y pue (4)unS (x)wr oroum ases ayy o)
Spuaixe enuuioy sigL "gx jo (3114) loewnsy paseiqun Teaury 1sag oyj si

€y AX: (X1 4X)X=gx (rn

9SED SIY) U “Jenger sI 4 pue y Juwl- UWN[OD
Iy sey x jt uonnjos Ases ue sey ¢ Sunewmnss jo wqoxd ayj, ‘uoisiadsip
uaouyun ue () <o puB XUjeWw oujowwis (syuyop oanedau - uou) ‘p'uu
® A ‘101004 -JopoweIRd - | XY B ST g XLIjBw-yxu poxy ® SI ¥ ‘101004 -T X
X # WIOPUBI POAISSqO uE St £ O Y 0= 240D 2 = Ar0) Suikidun

‘A = FA0D = 339 ‘0=124 Wty =4

[opowr Jeaury ofduns ay) JopISUOd oA\ UGHINPOIUY |

'sazenbg jswa payrup)
Jo yoroxdde ep-ovy oy ur dn spus ffjeuy puw 4 uo uoutpuoy
01 spea] SHj ‘eEnULI0] uonolpard pur UOHVINNSS 921103 o jjnsal
few 4 xuew ® o1 4 Fwdreus Afepyire usys payednssaur st i
A PUE X HI0Q JOJ pamofe st $AURI o ADUARYDP aXaym 4 .0 = 40D
Hx =47 ppow reamy oyy ynm spesp seded SNL CeRnsqY

(e861-z061) svBitg pavyssn
“aynf dw fo Liowsw a1 o1 paivaipacy
(1assvy) SVOAYA AVINTIH

AH

 STIVNOS ISYAT 40 hﬂw@@ﬂﬁ TAMING FHL NO

981-LLY 4 s@aY) T “osed '§ oA

SILLSILVLS TVILVINTHLYIA
amMY
ALITIgvEOH

L



i

178 H. Drygas

“Unified theory of least squares”. This method has been elaborated in a series
of papers (Mitra [7], Mitra and Moore [8], Rao and Mitra [10], [11], Rao
[13]-[20]). The question that was asked was the following:

Does there exist a (symmetric) matrix M such that the stationary points
of (y— XBY M{y—Xp), ie., solutions of the equation X’ MXp = X' My, yield
estimators f, which are BLUE of § in the sense that p'f is BLUE of p'§,
whenever p' f is estimable? Moreover, does £~ (y— X )’ M (y— X ) provide a
reasonable (MINQUE or BQUE) estimator of ¢® for some appropriate

integer f?
The answer was that M exists and has necessarily the form
(1.2) M=(V+XUX")",

an arbitrary g-inverse of ¥+ XUX', where U is a symmetric matrix such
that im(V+ XUX') = im(X ! ¥); f is equal to Rank (X:V) — Rank (X). Also
the problem of testing linear hypotheses via this approach has been dealt

’with in papers by Rao ([12], [17], [20]).

It seems to me that the main idea behind this approach is to enlarge the

covariance-matrix V artificially to a matrix W_in such a way that the

condition imX < im W is met. If thus is done in an appropriate way, a
correct result will be obtamed It is the purpose of this paper to pursue this
idea in detail.

2. Estimation of the mean value. First of all we define the concept of a

Unified Least Squares-Matrix (ULS -Matrix).

2.1. Definition. Let the model Ey = X8, Covy=c?V be given. A
symmetric n.nd. nxn-matrix W is called ULS-matrix with respect to this
model if

(2.1) Tim(VWT X) € im X < im(W)

for some g-inverse W~ of W.

2.2. Remark. If, moreover, im(V) < im(W), then (2.1) implies that
im(VWX) < imX for any g-inverse W of W.
- Proof. im(V) < im W implies WW™ V= WWV=V=W(WyV=VWW,
since (W) is also a g-inverse of W. Therefore VWV =VW~ WWX
= VW- X, since im(X) S im(W)=im(WW), WWX =X. Thus indeed
VWX and VW~ X and a fortiori im(VW™ X) and im(VWX) coincide,
ged. (If imX < im W, then VW™ X is independent of the choice of W~ iff

imVeimW)

- 2.3. Remark. The existence of a ULS -matrix can be seen as follows:
Let W= V+XX'. Since W is the sum of two n.n.d. matrices it is n.n.d.
and im(W)=im(X)+im(V)=im(X:V). Moreover, from (XX'+V)[I-
~W ((XX'+V)]=0orfrom(I-W W)X =0,(I-W~ W)¥V=0, it follows
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that
(2.2) X[I-W (XX'+V)]=0, VI-W (XX'+V)]=0,
2.3 V-VW V=YW~ XX, W X=X-XW XX.

This implies im(VW™ X)cim X and im(V-VW™ VY < imX.
The second condition will play an important role in this paper, too.

24. TueoreM. Let W be a symmetric nnd. matrix such that im(X) < im W,
Then

(2.4) Gy =X (X' (W YX) X (W™)y

is BLUE of XB in the model Ey = Xfi, Covy = o> W. Moreover, Gy is
BLUE of XP also in the model Ey = X8, Covy = o>V if and only if Wis a
ULS - matrix with respect to W~, ie, if im(VW™ X) < im(X).

The proof of this theorem was given in Drygas [4], theorem 24. Theorem
2.5 was proved in the same paper.

2.5. THeOREM. Let imX, imV<imW and let W~ be an arbitrary
g-inverse of W. Let, moreover, Gy be a BLUE of Ey in the model Ey = X,
Covy =W. Then Gy is BLUE of Ey in the model Ey = X, Covy=V
independent of the choice of Gy if and only if im(VW™ X) < im(X).

The following theorem characterizes the BLUE by a single equation.

2.6. TueoREM. (a) Let GW=X(X'W™ X)" X' and imX, im(V) < im W,
W nand. and symmetric. Then Gy is BLUE of Ey in the model Ey = X,
Covy=c*Vif im(VW™ X) < im(X).

(b) If, moreover, im(X V) =im(W), then Gy is BLUE of Xf in the model
Ey=Xp, Covy =02V if and only if GW=X(X'W~ X)” X".

Proof. (a) Let y = X = Wa, then
(2.5) Gy=X(XW X)"Xa= X(X;W““ XY X'W™ Wa

=X(X'W X)) X'W Xf=Xp.
If y=Va=Wb: X' a=0, then
(26) Gy=X(XW Xy Xb=X(XW XYX'W Wb

‘ =X(XW Xy X'W Va=X(XW X)"TX'a=0,
since V(WY X = XTfor some Tin view of im(V(W™) X) < im X. Thus Gy
is BLUE of Ey = Xf in the model Ey = X, Covy =a*¥, ¢ > 0.

(b) If im(W) =im(X:¥), then the BLUE is unique on im(W). Hence it
follows that if G,y is a BLUE, then G, W= GW for any other BLUE Gy.

Now Gy=X(X'W X)X'W~y is a BLUE. Therefore G, W=GW
=X(X'W- Xy X'W W=X(X'W~ X)” X', qed.
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When enlarging ¥ one could also think of enlarging V'to a matrix Wsuch
that im(V) < im(W). This case has already dealt with in Drygas [2], p. 50.

277, Tueorem. Let W be n.nd. and symmetric, imV < W, and let Gy be a
BLUE of Ey = Xf in the model Ey = X, Covy= o> W. Necessary and
sufficient that any such BLUE is as well BLUE in the model Ey = Xf, Covy
= ¢? V is the condition

VW~ (im X nim W) < im(X).

Proof. The zero set of all BLUE’s in the model Ey = XB, Covy = oW

is WX'~'(0). Thus WX'~'(0) 2 VX'~ ' (0) or, equivalently,

V- imX) 2 W ({im X)
is the necessary and sufficient condition for any BLUE Gy in the model Ey
= Xp, Covy = o Wto be as well BLUE of Ey = X8 in the model Ey = XB,
Covy = o V. This is again equivalent to

VW HimX) s im X

If aeW (imXnnimW), then a=W~"b beimX nimW and Wa

= WW ™ b=hbeimX. Thus
W= (imX nim W) < W™ (im X).
On the other hand, if ae W™ (im X), then
Va=VW™ WacimVW™ (imX nim W).

3. Estimation of the variance. If W is such that im(X) < im(W) and Wis
ULS with respect to some g-inverse W~ of W, then in the last section it has
been shown that a BLUE of Ey = XB in the model Ey = X, Covy = >V
can be computed via an appropriate Aitken formula for the BLUE in the
model Ey = XB, Covy = > W. If such a BLUE Gy is computed, the question
may arise whether
(3.1) =Gy W -G =f"1yI-GYW (I-G)y
is BQUE (Best Quadratic Unbiased Estimator) of ¢’ for some appropriate
integer f. If y' Ay = % then in the case of quasi -normally distributed y
(3.2) E(y Ay) = B X' AXp+a6>tr(4V)

(3.3) Var(y' Ay) = 26* tr(AVAV)+46> tr (X' X' AVA).

Therefore 6% = y' Ay is an unbiased estimator of o iff X'AX =0, tr(4V)
= 1. In this case also
(34) Var(y' Ay) = 2tr (XBF X' +a* V) A(XBB X' +0? V) A).

We introduce

(3.5) f = Rank (X : ¥)—Rank (X).
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3.1. THEOREM. Let the linear model Ey = Xf, Covy = %V be given, and
let y be quasi-normally distributed. Then, if Gy is a BLUE of Ey,

(6 STy U=G VT U-G)y

is a BQUE of o°.
v Ay is a BQUE of fo? iff one of the following equivalent conditions are
mer:

(3.7 XAX =0, VAX =0, VAV={I-G)V,

(38) (XX'+WAXX +W=({I-G)V,

(39) (XX'+V)AX =0, VAVAV = VAV, tr(AV) =,
1

(3.10) p V' Ay ~ x3 if y is normally distributed.

(See, e.g. Seely [21], Graybill and Wortham [5]).
Proof. (a) y'By is an unbiased estimator of zero iff X'BX =0, tr(BV)
= 0. Therefore the estimator given by (3.6) is Best Quadratic Unbiased iff

(311 tr(XBE X' +02 V) A(XBR X'+02 V) B) = OVB:
X'BX =0, tr(BV) =0,

where A =f"Y(I—-G)Y V™ (I-G). Evidently, tr(AV) =1, X’ AX = 0. Now
(XBP' X'+02 V) A (Xﬂﬁ’xf‘i—u'z‘ V)y=0c*VAV=0*f "' VI-GYV (I-G)V
=¢*f T I-GVVV VI-G) =a*f " " (I-GVUI~-GY =c*f 1 I-G) V.
Thus (3.11) is equivalent to _ .
(3.12) tr((I~G) VB) = tr (VB)—tr (GVB) = 0.

Since tr(VB) = tr(BV) =0, only tr(GVB) =0 if X'BX =0, tr(BV) =0

has to be shown. X'BX = 0 implies GVBX =0 or X' BGV = 0. This again
implies GVBGV =0 and

(3.13) O=1tr (V™ GVBGV) =tr(GVW ™~ GVB) =tr(GVV™ VG'B)
= tr(GVG' B) = tr(GVB).
(b) Since (XBB' X' +62 V)A(XPR X'+62 V) is unique, it follows that 3’ Ay
is BQUE of fo? iff a
X'AX =0, w(AV)=],
(XPB' X' +a* VYAXBE X' +0* V) =c*(I-G)V
for all 8, o. Letting ¢ = 1, it follows that

(3.14)

(3.15) (XBB X'+ V)A(XBB X'+ W) =(I-G) V.
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QO is also symmetric: Q' =R'G C =CRRGC =CVGC =CGVC
= CGRR'C' = CGR. For this reason P =I,—Q, ie, RAR=1-R' G'C’ and
finally VAV=V-VGCR =V-VG =V-GV=(I-G)V.

(d) The equivalence of (3.10) and (3.11) for the of normally distributed
observation y follows immediately from Corollary (2.11.1) in Srivastava and
Khatri [22], p. 64.

Since WAW = WA'W=(I—G)V, A must not be symmetric. From this it
follows that, eg, ¥ W™ (I-G)y is BQUE of fo? This estimator is not
necessarily invariant.

The preceding theorem shows that
(3.20) - T U-GY W (I-G)y

is BQUE of ¢? if Gy is a BLUE of Ey in the model Ey = X8, Covy =a¢*V
and Wis the ULS-matrix V+ XX'. Indeed, -G W=(I-G)V=V({I-G)
= W(I—G) and therefore '

(B21) WUI-GYW (-G W=(I-G)WW™ W(I-GY
=(-GW(I-G) =(I-G V(-G =(I-G)V.

Now the question arises for which ULS - matrices W the formula (3.20) leads
to a BQUE of ¢® The answer is given by Theorem 3.2.

(3.22) yI-GwW-(I-G)y

is BQUE of fo iff im(V—VW™ V)< imX.

(b) im{(V-VW™ V)<im X holds if and only if V(W™ is the identity on
VX" 1(0).

3.3. Remark. Theorem 3.2 generalizes a theorem by Kruskal [6] ob-
tained for W= I, V regular. Note that f = 0 iff im ¥ < im X. In this case the
conditions im(VW = X), im(V— VW~ V) c im(X) are automatically met. Evi-
dently VW™ V is independent of the choice of the g-inverse W~ of W if
im(V) < im(W).

Proof of Theorem 3.2. Clearly im(V— VW~ V) = im X is equivalent to
X'"H0) = (V—=V(W™) V)" *(0). This, however, means that Vz = V(W) z for
all ze X'~ '(0). Therefore only part(a) of the theorem has to be proved.

Since I-GYW (I-G)X =0, (3.22) is BQUE of fo* iff V(I-G) x
xW (I-G)V=(I-G)V. But V(I-G) =(I—G)V and we get the equation .

(3.23) (I-G(V-VW (I-G) V)= 0.

(I—G)z is unique if zeim V and vanishes there iff zeim (V) ~im X. This
implies that (3.23) is equivalent to im(V-VW (I-G)V)<imX. Now
im(VW~™ GV) < im X since im(GV) < im X and W was ULS with respect to
W~. Therefore the above relation holds iff im(V—-VW™ V) < im X,
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Note that the condition of this theorem is just the condition obtained in
(2.3) for the ULS -matrix V4 XX'. Our next aim is, again, to characterize a
BQUE of fo? by a single equation. This equation is WAW = (I —G) V for the
ULS -matrix W= V+XX’. This characterization will be valid for arbitrary
ULS - matrices W if im(W) =im(X:V) and im(V=VW~ V)< imX.

34. Tueorem. (a) Let W be an ULS-matrix such that im(X:V)<imW
and im(V-VW~- VycimX. If WAW=(I-G} ¥, rherx V' Ay is BQUE of fo*.

(b) Uim(VX} im(W); im(VW~ X), im(V—VW~ V) =im X, then y' Ay
is BOUE of fo* iff WAW (-G V.

(¢} Under the assumptions of (b) im(V—W) <imX.

(d) Under the assumptions of (b) the BLUE's of Ey in the models Ey = XJ,
Covy =02V and Ey = Xf, Covy = o> W coincide.

(e) Under the assumptions of (b) W= XAX'+V for some symmetric A.

The assertion (e) of this theorem shows that we finally arrive at the
class of matrices considered by Rao and Mitra. It may be noted that if W
= XAX'+V is such that im(X:V) =im W, then X'~ 1(0), V~1(0) 2 W 1(0)
and WH-W W]=0 implies X'[I-W W]=0, V[UI-W W]=0
These » equations are equivalent to V(W )X =X-XAX'(W )X and
V—VW X =VW™ XAX' - XAX' (WY XAX'. Therefore the ULS-pro-
perty and the property im(V— VW™ V) < im X are fulfilled in this case.

Proof of the theorem. (a) Since im(X) < im(W), WW~ X = X and
therefore WAX = WAWW ™ X =(I-G VW™ X =0 in view of im(VW™ X)
cimX,(I—-G)X =0. Since X'~ 1(0), V" (0) @ W~ (D) from this X" AX =0,
VAX =0 is obtained. Finally WAV= WAWW V={I-GQ VW V=(I-G)
V—(I-G)(V=VW V)=(I~G)V, since im(V-VW V)cimX, (I-G)X
= 0. By theorem 3.1 y Ay is BQUE of fo? since VAV= VW~ WAV
=VW (-G V=(V-VW V)(I-GV=(I-G)V

(b) If ¥ Ay is BQUE of fo?, then X'AX =0, X' AV=10, VAV=(-G) V.
Since Im(W) =im(X:V) from this X’ AW =10, WAX =0 is obtained. Now
let Wa = X+ Vb. From this we get AWa = VAVa=(I-G)Vb =(I—G) Wa.
Finally, WAWa = WaVb = W(I—G)b. In (¢) we will show that im(V—W)
cimX. Thus (—-G)W=(-G)V and WAVb=(I-G)V'b=(I-G)Vb
=(I-G)(Va+XP)=(I-G)Wa=(I-G)Va.

(c) Let Wa=Vb+Xp, X'b=0. There Va=VW"~ Wa =VW (Vb+XP)
= Vb+ VW™ Xf. Therefore Va—Wa = VW™ X~ Xfeim(X) by the ULS-
property.

(d) f im(VW™ X)cim(X), then, by Theorem 2.5, V(X’”I(U s
W(X'~'(0)). On the other hand, from im(V—W)<imX we get X' ~*(0)
< (V—-W) 1(0) and therefore Va= Wa if X'a=0. Thus the coincidence
of the BLUE’s is evident.

(e) If P=XX" is the projection on im (.X}, then from im(V—-W)cim X
it is obtained that P(V—-W)=(V-W)P = V-W. This shows V—W=
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P(V-W)P = XX+t (V—W)(X*)Y X' = —XAX', A= —X"*(V=W)(X*) and
W= V+XAX', qed. |

4, Prediction. Consider the linear model

Y Xy Vi 0V W
(4.1) E (m) = ( ) B, Cov (m) = o2 (Mﬁm/),
Yy X % Vi sz %2
y is observed, but y, is unobserved and to be predicted. Consider a linear

function !y, which is predictable, ie, X, 'leim(X’). Then a'y is the Best
Linear Unbiased Predictor (BLUP) of 'y, if

(4.2) X'a=(X)1,
@3 Va—V,,leim(X),

{Drygas [3], Toutenburg [23], Baksalary and Kala [1]). A solution of (4.2),
(4.3} is e.g. given by
(4.4) a=GX"Y(X)I+(I-GY V™ (V)]
where Gy is a BLUE of X§ in the model Ey = Xf, Covy = V. If we replace
V by a matrix W, n.n.d and symmetric, such that im (V,,— VW™ ¥,,) € im(X),
then in (4.4) Vcan be replaced by W. If, eg, im (V— W) < im(X), then Wa—
— Vi, leim X implies Va— V;, le(X). Since im(V,,) < im ¥, im(V,,— VW™ V)
cim(V—VW™ V), we arrive at a well-known condition.

If X, = TX, then y, is predictable and G, y is BLUP of y, iff G, X = X,
G, Vz=V{,z if X'z=0. A single-equation characterization is

G W=X, (X'W™X)" X)” X'+ Vo (I-W X(X'W™X) (V= V3)

4.1. Tueorem. (a) If im(VW™ X) cim(X) <im(W) and im((X,))
< im(X"), then
45 Gy=X (X(W )Xy X'(W)y+

VLW (I-X(X(W Y XY X' (W))y

is BLUP of y, iff im(V,,— V(W) V;,) < imX.

(b) If im(X), im(V) cim(W); im(VW™ X), im(V,,— VW™ X ;) cimX
and
(4.6) GW=X (XW X)) X'+V,(I-W X(X'W~ X)X,
then G,y is BLUP of y,.

(© If im(X:V)=im(W) and im(VW" X), im(V;,— VW™ ¥,) < im(X),
then G,y is BLUP of y* iff G, W is given by formula (4.6).

For example if G, y = X (X ") Gy + Vy{, Ay, y' Ay BQUE of fo*, then G, y is
BLUP of y,.
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