ON THE UNIFIED THEORY OF LEAST SQUARES 1

BV

HILMAR DRYGAS (KASSEL)

Dedicated to the memory of my father, Gerhard Drygas (1902-1983)

result in correct estimation and prediction formulae. This leads to condition on W and finally ends up in the Rao-Mitra approach of Abstract. This paper deals with the linear model $Ey=X\beta$, $Covy=\sigma^2V$ where deficiency of ranks is allowed for both X and V. It is investigated when artificially enlarging V to a matrix W may Unified Least Squares.

1. Introduction. We consider the simple linear model

$$y = X\beta + \sigma \varepsilon$$
, $E \varepsilon = 0$, $E \varepsilon \varepsilon' = \text{Cov} \varepsilon = V$,

n.n.d. (non-negative definite) symmetric matrix and $\sigma > 0$ an unknown dispersion. The problem of estimating β has an easy solution if X has full $\times 1$ -vector, X is a fixed $n \times k$ -matrix, β is a $k \times 1$ -parameter-vector, an observed random y is column-rank k and V is regular. In this case implying $\operatorname{Cov} y = \sigma^2 \operatorname{Cov} \varepsilon = \sigma^2 V$. Here

$$X\hat{\beta} = X(X'V^{-1}X)^{-1}X'V^{-1}y$$

is the Best Linear Unbiased Estimator (BLUE) of $X\beta$. This formula extends to the case where $\operatorname{im}(X) \subseteq \operatorname{im}(V)$ and X has less than full rank, if the occurring inverses are replaced by generalized inverses (g-inverses).

If, however, the condition $\operatorname{im}(X) \subseteq \operatorname{im}(V)$ is not met, a BLUE can no longer be obtained via the (modified) Aitken formula (1.1). To overcome the problem of deficient rank, Rao and Mitra have designed a method called the

¹ A previous version of this paper has been presented at the European Meeting of Statisticians, Wrocław, Poland, 31. 8.-4. 9. 81.

"Unified theory of least squares". This method has been elaborated in a series of papers (Mitra [7], Mitra and Moore [8], Rao and Mitra [10], [11], Rao [13]-[20]). The question that was asked was the following:

Does there exist a (symmetric) matrix M such that the stationary points of $(y - X\beta)' M(y - X\beta)$, i.e., solutions of the equation $X' M X \hat{\beta} = X' M y$, yield estimators $\hat{\beta}$, which are BLUE of β in the sense that $p' \hat{\beta}$ is BLUE of $p' \beta$, whenever $p' \beta$ is estimable? Moreover, does $f^{-1}(y - X\hat{\beta})' M(y - X\hat{\beta})$ provide a reasonable (MINQUE or BQUE) estimator of σ^2 for some appropriate integer f?

The answer was that M exists and has necessarily the form

$$(1.2) M = (V + XUX')^{-},$$

an arbitrary g-inverse of V+XUX', where U is a symmetric matrix such that $\operatorname{im}(V+XUX')=\operatorname{im}(X:V)$; f is equal to Rank (X:V) — Rank (X). Also the problem of testing linear hypotheses via this approach has been dealt with in papers by Rao ([12], [17], [20]).

It seems to me that the main idea behind this approach is to enlarge the covariance-matrix V artificially to a matrix W in such a way that the condition im $X \subseteq \operatorname{im} W$ is met. If thus is done in an appropriate way, a correct result will be obtained. It is the purpose of this paper to pursue this idea in detail.

- 2. Estimation of the mean value. First of all we define the concept of a Unified Least Squares Matrix (ULS Matrix).
- 2.1. Definition. Let the model $Ey = X\beta$, $Cov y = \sigma^2 V$ be given. A symmetric n.n.d. $n \times n$ -matrix W is called ULS-matrix with respect to this model if

$$(2.1) \qquad \operatorname{im}(VW^{-}X) \subseteq \operatorname{im}X \subseteq \operatorname{im}(W)$$

for some g-inverse W^- of W.

2.2. Remark. If, moreover, $\operatorname{im}(V) \subseteq \operatorname{im}(W)$, then (2.1) implies that $\operatorname{im}(V\widetilde{W}X) \subseteq \operatorname{im}X$ for any g-inverse \widetilde{W} of W.

Proof. $\operatorname{im}(V) \subseteq \operatorname{im} W$ implies $WW^-V = W\tilde{W}V = V = W(\tilde{W})'V = V\tilde{W}W$, since $(\tilde{W})'$ is also a g-inverse of W. Therefore $V\tilde{W}V = VW^-W\tilde{W}X$ = VW^-X , since $\operatorname{im}(X) \subseteq \operatorname{im}(W) = \operatorname{im}(W\tilde{W})$, $W\tilde{W}X = X$. Thus indeed $V\tilde{W}X$ and VW^-X and a fortiori $\operatorname{im}(VW^-X)$ and $\operatorname{im}(V\tilde{W}X)$ coincide, q.e.d. (If $\operatorname{im} X \subseteq \operatorname{im} W$, then VW^-X is independent of the choice of W^- iff $\operatorname{im} V \subseteq \operatorname{im} W$.)

2.3. Remark. The existence of a ULS-matrix can be seen as follows: Let W = V + XX'. Since W is the sum of two n.n.d. matrices it is n.n.d. and $\operatorname{im}(W) = \operatorname{im}(X) + \operatorname{im}(V) = \operatorname{im}(X : V)$. Moreover, from $(XX' + V)[I - W^{-}(XX' + V)] = 0$ or from $(I - W^{-}W)X = 0$, $(I - W^{-}W)V = 0$, it follows

that

$$(2.2) X'[I-W^{-}(XX'+V)] = 0, V[I-W^{-}(XX'+V)] = 0,$$

$$(2.3) V - VW^- V = VW^- XX', VW^- X = X - XW^- XX'.$$

This implies $\operatorname{im}(VW^-X) \subseteq \operatorname{im} X$ and $\operatorname{im}(V-VW^-V) \subseteq \operatorname{im} X$.

The second condition will play an important role in this paper, too.

2.4. Theorem. Let W be a symmetric n.n.d. matrix such that $im(X) \subseteq im W$. Then

(2.4)
$$Gy = X(X'(W^{-})'X)^{-}X'(W^{-})'y$$

is BLUE of $X\beta$ in the model $Ey = X\beta$, $Cov y = \sigma^2 W$. Moreover, Gy is BLUE of $X\beta$ also in the model $Ey = X\beta$, $Cov y = \sigma^2 V$ if and only if W is a ULS-matrix with respect to W^- , i.e., if $im(VW^- X) \subseteq im(X)$.

The proof of this theorem was given in Drygas [4], theorem 2.4. Theorem 2.5 was proved in the same paper.

2.5. Theorem. Let im X, im $V \subseteq \operatorname{im} W$ and let W^- be an arbitrary g-inverse of W. Let, moreover, Gy be a BLUE of Ey in the model $Ey = X\beta$, Cov y = W. Then Gy is BLUE of Ey in the model $Ey = X\beta$, Cov y = V independent of the choice of Gy if and only if $\operatorname{im}(VW^-X) \subseteq \operatorname{im}(X)$.

The following theorem characterizes the BLUE by a single equation.

- 2.6. THEOREM. (a) Let $GW = X(X'W^-X)^-X'$ and $\operatorname{im} X$, $\operatorname{im}(V) \subseteq \operatorname{im} W$, W n.n.d. and symmetric. Then Gy is BLUE of Ey in the model $Ey = X\beta$, $Cov y = \sigma^2 V$ if $\operatorname{im}(VW^-X) \subseteq \operatorname{im}(X)$.
- (b) If, moreover, $\operatorname{im}(X : V) = \operatorname{im}(W)$, then Gy is BLUE of $X\beta$ in the model $Ey = X\beta$, $Cov y = \sigma^2 V$ if and only if $GW = X(X'W^-X)^-X'$.

Proof. (a) Let
$$y = X\beta = Wa$$
, then

(2.5)
$$Gy = X(X'W^{-}X)^{-}X'a = X(X'W^{-}X')^{-}X'W^{-}Wa$$
$$= X(X'W^{-}X)^{-}X'W^{-}X\beta = X\beta.$$

If y = Va = Wb; X'a = 0, then

(2.6)
$$Gy = X(X'W^{-}X)^{-}X'b = X(X'W^{-}X)'X'W^{-}Wb$$

= $X(X'W^{-}X)^{-}X'W^{-}Va = X(X'W^{-}X)^{-}T'X'a = 0$,

since $V(W^-)'X = XT$ for some T in view of $\operatorname{im}(V(W^-)'X) \subseteq \operatorname{im} X$. Thus Gy is BLUE of $Ey = X\beta$ in the model $Ey = X\beta$, $Cov y = \sigma^2 V$, $\sigma > 0$.

(b) If im(W) = im(X : V), then the BLUE is unique on im(W). Hence it follows that if $G_1 y$ is a BLUE, then $G_1 W = GW$ for any other BLUE Gy. Now $Gy = X(X'W^-X)X'W^-y$ is a BLUE. Therefore $G_1 W = GW = X(X'W^-X)^-X'W^-W = X(X'W^-X)^-X'$, q.e.d.

When enlarging V one could also think of enlarging V to a matrix W such that $\operatorname{im}(V) \subseteq \operatorname{im}(W)$. This case has already dealt with in Drygas [2], p. 50.

2.7. THEOREM. Let W be n.n.d. and symmetric, im $V \subseteq W$, and let Gy be a BLUE of Ey = $X\beta$ in the model Ey = $X\beta$, Cov y = $\sigma^2 W$. Necessary and sufficient that any such BLUE is as well BLUE in the model Ey = $X\beta$, Cov y = $\sigma^2 V$ is the condition

$$VW^-$$
 (im $X \cap \text{im } W$) $\subseteq \text{im}(X)$.

Proof. The zero set of all BLUE's in the model $Ey = X\beta$, $Cov y = \sigma^2 W$ is $WX'^{-1}(0)$. Thus $WX'^{-1}(0) \supseteq VX'^{-1}(0)$ or, equivalently,

$$V^{-1}(\operatorname{im} X) \supseteq W^{-1}(\operatorname{im} X)$$

is the necessary and sufficient condition for any BLUE Gy in the model $Ey = X\beta$, $Cov y = \sigma^2 W$ to be as well BLUE of $Ey = X\beta$ in the model $Ey = X\beta$, $Cov y = \sigma^2 V$. This is again equivalent to

$$VW^{-1}(\operatorname{im} X)\subseteq \operatorname{im} X.$$

If $a \in W^-$ (im $X \cap \text{im } W$), then $a = W^- b$, $b \in \text{im } X \cap \text{im } W$ and $Wa = WW^- b = b \in \text{im } X$. Thus

$$W^{-}(\operatorname{im} X \cap \operatorname{im} W) \subseteq W^{-1}(\operatorname{im} X).$$

On the other hand, if $a \in W^{-1}(\operatorname{im} X)$, then

$$Va = VW^- Wa \in \operatorname{im} VW^- (\operatorname{im} X \cap \operatorname{im} W).$$

3. Estimation of the variance. If W is such that $\operatorname{im}(X) \subseteq \operatorname{im}(W)$ and W is ULS with respect to some g-inverse W^- of W, then in the last section it has been shown that a BLUE of $Ey = X\beta$ in the model $Ey = X\beta$, $\operatorname{Cov} y = \sigma^2 V$ can be computed via an appropriate Aitken formula for the BLUE in the model $Ey = X\beta$, $\operatorname{Cov} y = \sigma^2 W$. If such a BLUE Gy is computed, the question may arise whether

(3.1)
$$f^{-1}(y-Gy)'W^{-}(y-Gy) = f^{-1}y'(I-G)'W^{-}(I-G)y$$

is BQUE (Best Quadratic Unbiased Estimator) of σ^2 for some appropriate integer f. If $y'Ay = \hat{\sigma}^2$, then in the case of quasi-normally distributed y

(3.2)
$$\mathbb{E}(y'Ay) = \beta' X' AX\beta + \sigma^2 \operatorname{tr}(AV)$$

(3.3)
$$\operatorname{Var}(y'Ay) = 2\sigma^{4}\operatorname{tr}(AVAV) + 4\sigma^{2}\operatorname{tr}(X\beta\beta'X'AVA).$$

Therefore $\hat{\sigma}^2 = y'Ay$ is an unbiased estimator of σ^2 iff X'AX = 0, tr(AV) = 1. In this case also

(3.4)
$$\operatorname{Var}(y'Ay) = 2\operatorname{tr}((X\beta\beta'X' + \sigma^2V)A(X\beta\beta'X' + \sigma^2V)A).$$

We introduce

$$(3.5) f = \operatorname{Rank}(X : V) - \operatorname{Rank}(X).$$

3.1. THEOREM. Let the linear model $Ey = X\beta$, $Cov y = \sigma^2 V$ be given, and let y be quasi-normally distributed. Then, if Gy is a BLUE of Ey,

(3.6)
$$f^{-1} y'(I-G)' V^{-}(I-G) y$$

is a BQUE of σ^2 .

y' Ay is a BQUE of $f\sigma^2$ iff one of the following equivalent conditions are met:

(3.7)
$$X'AX = 0$$
, $VAX = 0$, $VAV = (I - G)V$,

$$(3.8) (XX'+V)A(XX'+V) = (I-G)V,$$

(3.9)
$$(XX'+V)AX = 0$$
, $VAVAV = VAV$, $tr(AV) = f$,

(3.10)
$$\frac{1}{\sigma^2} y' A y \sim \chi_f^2$$
 if y is normally distributed.

(See, e.g. Seely [21], Graybill and Wortham [5]).

Proof. (a) y'By is an unbiased estimator of zero iff X'BX = 0, tr(BV) = 0. Therefore the estimator given by (3.6) is Best Quadratic Unbiased iff

$$(3.11) \quad \operatorname{tr}\left((X\beta\beta'X' + \sigma^2V)A(X\beta\beta'X' + \sigma^2V)B\right) = 0 \forall B:$$

$$X'BX = 0$$
, $\operatorname{tr}(BV) = 0$,

where $A = f^{-1}(I - G)' V^{-}(I - G)$. Evidently, $\operatorname{tr}(AV) = 1$, X' A X = 0. Now $(X\beta\beta' X' + \sigma^2 V) A (X\beta\beta' X' + \sigma^2 V) = \sigma^4 V A V = \sigma^4 f^{-1} V (I - G)' V^{-}(I - G) V = \sigma^4 f^{-1}(I - G) V V^{-} V (I - G)' = \sigma^4 f^{-1}(I - G) V (I - G)' = \sigma^4 f^{-1}(I - G) V$.

Thus (3.11) is equivalent to

$$(3.12) \operatorname{tr}((I-G)VB) = \operatorname{tr}(VB) - \operatorname{tr}(GVB) = 0.$$

Since tr(VB) = tr(BV) = 0, only tr(GVB) = 0 if X'BX = 0, tr(BV) = 0 has to be shown. X'BX = 0 implies GVBX = 0 or X'BGV = 0. This again implies GVBGV = 0 and

(3.13)
$$0 = \operatorname{tr}(V^{-}GVBGV) = \operatorname{tr}(GVV^{-}GVB) = \operatorname{tr}(GVV^{-}VG'B) = \operatorname{tr}(GVG'B) = \operatorname{tr}(GVB).$$

(b) Since $(X\beta\beta'X' + \sigma^2V)A(X\beta\beta'X' + \sigma^2V)$ is unique, it follows that y'Ay is BQUE of $f\sigma^2$ iff

(3.14)
$$X'AX = 0, \quad \operatorname{tr}(AV) = f,$$
$$(X\beta\beta'X' + \sigma^2V)A(X\beta\beta'X' + \sigma^2V) = \sigma^4(I - G)V$$

for all β , σ . Letting $\sigma = 1$, it follows that

$$(3.15) (X\beta\beta' X' + V) A (X\beta\beta' X' + V) = (I - G) V.$$

Let $W_{\beta} = (X\beta\beta' X' + V)$; then $X\beta \in \text{im}(W_{\beta})$ and, therefore,

(3.16)
$$(X\beta\beta'X'+V)AX\beta = W_{\beta}AW_{\beta}W_{\beta}^{-}X\beta = (I-G)VW_{\beta}^{-}X\beta = 0,$$

since $(VW_{\beta}^{-}X\beta) = \lambda X\beta \in \text{im } X \text{ (ULS - property)}$ and $(I-G)X = 0.$

From (3.16) we again get

$$\beta' X' A X \beta = 0, \quad V A X \beta = 0,$$

i.e.
$$X'AX = 0$$
, $VAX = 0$. Using this, (3.14) implies $VAV = (I - G)V$,

(3.18)
$$\operatorname{tr}(AV) = \operatorname{tr}(AVV^+V) = \operatorname{tr}(VAVV^+) = \operatorname{tr}((I-G)VV^+) = f.$$

This follows because $(I-G)VV^+$ is an idempotent matrix vanishing on $\operatorname{im}(X) \cap \operatorname{im}(V) + V^{-1}(0)$ and being the identity on $V(X'^{-1}(0))$. Thus

$$\operatorname{tr}((I-G)VV^{+}) = \operatorname{Rank}((I-G)VV^{+}) = \dim V(X^{\prime-1}(0))$$

$$= \dim (\operatorname{im}(V)) - \dim (\operatorname{im}(V) \cap \operatorname{im}(X))$$

$$= \operatorname{Rank}(V) - [\operatorname{Rank}(V) + \operatorname{Rank}(X) - \operatorname{Rank}(X : V)]$$

$$= \operatorname{Rank}(X : V) - \operatorname{Rank}(X) = f.$$

Therefore it is proved that y' Ay is BQUE of $f\sigma^2$ if (3.7) is met.

(b) Clearly (3.7) implies (3.8). On the other hand, if we have W = V + KX', then $\operatorname{im}(VW^{-}X) \subseteq \operatorname{im}(X) \subseteq \operatorname{im}(W)$ (ULS-property) and (3.8) +XX'implies

(3.19)
$$WAX = WAWW^{-} X = (I - G)VW^{-} X = 0$$

and from this X'AX = 0, VAX = 0, VAV = (I - G)V, i.e. (3.7), is obtained. (c) Since

$$VAVAV = (I - G)VAV = (I - G)(I - G)V = (I - G)V(I - G)' = (I - G)V = VAV$$

more complicated. The proof is due to J. Müller (See Müller [12], p. 23). Let k = Rank(V) and V = RR', where R is a $n \times k$ -matrix of Rank k. We define C by $C = R^+ = (R'R)^{-1}R'$, consequently $CR = R'C' = I_k$. Since VAV = RR'ARR' = RR'ARR', it follows that $R'AR = (R'AR)^2$. Hence R'AR = P is a projection and Rank(P) = tr(P) = tr(AV) = f. Let, moreover, Q = C(GV)C' = CGRR'C' = CGR. Q is also a projection: $Q^2 = CGRCGR = CG^2R = CGR$, since $G^2RR' = G^2V = GVG' = GV = GRR'$. Finally, PQ = R'ARCGR = R'AGR since RR'AGR = VAGR = 0 in view if (3.8) or (3.9) holds, it is clear that (3.7) or (3.8) implies (3.9). The converse is U **∂** of $\operatorname{im}(GR) = \operatorname{im}(GRR) = \operatorname{im}(GV) = \operatorname{im}(X) \cap \operatorname{im}V \subseteq \operatorname{im}(X)$. Thus im $(im(P))^{\perp} = P^{-1}(0).$

(CGV) = Rank (CVG') = Rank(R'G') = Rank (GR) = Rank $(GV) = \dim \times \times (\operatorname{im}(X) \cap \operatorname{im}(V)) = \operatorname{rank}(V) - f = k - \operatorname{rank}(P)$. Thus im $(Q) = P^{-1}(0)$. But On the other hand, Rank (Q) = Rank (CGR) = Rank (CGRR') = Rank

- Q' is also symmetric: Q' = R'G'C' = CRR'G'C' = CVG'C' = CGVC' = CGRR'C' = CGR. For this reason $P = I_k Q$, i.e., R'AR = I R'G'C' and finally VAV = V VG'C'R' = V VG' = V GV = (I G)V.
- (d) The equivalence of (3.10) and (3.11) for the of normally distributed observation y follows immediately from Corollary (2.11.1) in Srivastava and Khatri [22], p. 64.

Since WAW = WA'W = (I - G)V, A must not be symmetric. From this it follows that, e.g., $y'W^{-}(I - G)y$ is BQUE of $f\sigma^{2}$. This estimator is not necessarily invariant.

The preceding theorem shows that

(3.20)
$$f^{-1} y'(I-G)' W^{-}(I-G) y$$

is BQUE of σ^2 if Gy is a BLUE of Ey in the model Ey = $X\beta$, Cov $y = \sigma^2 V$ and W is the ULS-matrix V + XX'. Indeed, (I - G)W = (I - G)V = V(I - G)' = W(I - G)' and therefore

(3.21)
$$W(I-G)'W^{-}(I-G)W = (I-G)WW^{-}W(I-G)'$$
$$= (I-G)W(I-G)' = (I-G)V(I-G)' = (I-G)V.$$

Now the question arises for which ULS-matrices W the formula (3.20) leads to a BQUE of σ^2 . The answer is given by Theorem 3.2.

3.2. Theorem. (a) If W is a ULS-matrix with respect to W^- , then

$$(3.22) y'(I-G)'W^{-}(I-G)y$$

is BQUE of $f\sigma^2$ iff $\operatorname{im}(V-VW^-V) \subseteq \operatorname{im} X$.

- (b) $\operatorname{im}(V-VW^-V) \subseteq \operatorname{im} X$ holds if and only if $V(W^-)'$ is the identity on $VX'^{-1}(0)$.
- 3.3. Remark. Theorem 3.2 generalizes a theorem by Kruskal [6] obtained for W = I, V regular. Note that f = 0 iff im $V \subseteq \operatorname{im} X$. In this case the conditions im $(V \cup W^- X)$, $\operatorname{im}(V VW^- V) \subseteq \operatorname{im}(X)$ are automatically met. Evidently $VW^- V$ is independent of the choice of the g-inverse W^- of W if $\operatorname{im}(V) \subseteq \operatorname{im}(W)$.

Proof of Theorem 3.2. Clearly $\operatorname{im}(V-VW^-V) \subseteq \operatorname{im} X$ is equivalent to $X'^{-1}(0) \subseteq (V-V(W^-)'V)^{-1}(0)$. This, however, means that $Vz = V(W^-)'z$ for all $z \in X'^{-1}(0)$. Therefore only part(a) of the theorem has to be proved.

Since $(I-G)'W^-(I-G)X = 0$, (3.22) is BQUE of $f\sigma^2$ iff $V(I-G)' \times W^-(I-G)V = (I-G)V$. But V(I-G)' = (I-G)V and we get the equation

$$(3.23) (I-G)(V-VW^{-}(I-G)V) = 0.$$

(I-G)z is unique if $z \in \operatorname{im} V$ and vanishes there iff $z \in \operatorname{im}(V) \cap \operatorname{im} X$. This implies that (3.23) is equivalent to $\operatorname{im}(V-VW^-(I-G)V) \subseteq \operatorname{im} X$. Now $\operatorname{im}(VW^-GV) \subseteq \operatorname{im} X$ since $\operatorname{im}(GV) \subseteq \operatorname{im} X$ and W was ULS with respect to W^- . Therefore the above relation holds iff $\operatorname{im}(V-VW^-V) \subseteq \operatorname{im} X$,

Note that the condition of this theorem is just the condition obtained in (2.3) for the ULS-matrix V+XX'. Our next aim is, again, to characterize a BQUE of $f\sigma^2$ by a single equation. This equation is WAW = (I-G)V for the ULS-matrix W = V+XX'. This characterization will be valid for arbitrary ULS-matrices W if $\operatorname{im}(W) = \operatorname{im}(X : V)$ and $\operatorname{im}(V-VW^-V) \subseteq \operatorname{im} X$.

- 3.4. THEOREM. (a) Let W be an ULS-matrix such that $\operatorname{im}(X:V) \subseteq \operatorname{im} W$ and $\operatorname{im}(V-VW^-V) \subseteq \operatorname{im} X$. If WAW = (I-G)V, then y'Ay is BQUE of $f\sigma^2$.
- (b) If $\operatorname{im}(V:X) = \operatorname{im}(W)$; $\operatorname{im}(VW^-X)$, $\operatorname{im}(V-VW^-V) \subseteq \operatorname{im}X$, then y'Ay is BQUE of $f\sigma^2$ iff WAW = (I-G)V.
 - (c) Under the assumptions of (b) $\operatorname{im}(V-W) \subseteq \operatorname{im} X$.
- (d) Under the assumptions of (b) the BLUE's of Ey in the models Ey = $X\beta$, Cov $y = \sigma^2 V$ and Ey = $X\beta$, Cov $y = \sigma^2 W$ coincide.
 - (e) Under the assumptions of (b) $W = X\Lambda X' + V$ for some symmetric Λ .

The assertion (e) of this theorem shows that we finally arrive at the class of matrices considered by Rao and Mitra. It may be noted that if $W = X\Lambda X' + V$ is such that $\operatorname{im}(X : V) = \operatorname{im} W$, then $X'^{-1}(0)$, $V^{-1}(0) \supseteq W^{-1}(0)$ and $W[I - W^{-}W] = 0$ implies $X'[I - W^{-}W] = 0$, $V[I - W^{-}W] = 0$. These equations are equivalent to $V(W^{-})'X = X - X\Lambda X'(W^{-})'X$ and $V - VW^{-}X = VW^{-}X\Lambda X' - X\Lambda X'(W^{-})'X\Lambda X'$. Therefore the ULS-property and the property $\operatorname{im}(V - VW^{-}V) \subseteq \operatorname{im} X$ are fulfilled in this case.

Proof of the theorem. (a) Since $\operatorname{im}(X) \subseteq \operatorname{im}(W)$, $WW^-X = X$ and therefore $WAX = WAWW^-X = (I-G)VW^-X = 0$ in view of $\operatorname{im}(VW^-X) \subseteq \operatorname{im} X$, (I-G)X = 0. Since $X'^{-1}(0)$, $V^{-1}(0) \supseteq W^{-1}(0)$ from this X'AX = 0, VAX = 0 is obtained. Finally $WAV = WAWW^-V = (I-G)VW^-V = (I-G)V = (I-G)V = (I-G)V = (I-G)V = 0$. By theorem 3.1 y'Ay is BQUE of $f\sigma^2$, since $VAV = VW^-WAV = VW^-(I-G)V = (V-VW^-V)(I-G)V = (I-G)V$.

- (b) If y'Ay is BQUE of $f\sigma^2$, then X'AX = 0, X'AV = 0, VAV = (I G)V. Since im(W) = im(X : V) from this X'AW = 0, WAX = 0 is obtained. Now let $Wa = X\beta + Vb$. From this we get AWa = VAVa = (I G)Vb = (I G)Wa. Finally, WAWa = WaVb = W(I G)'b. In (c) we will show that $im(V W) \subseteq im X$. Thus (I G)W = (I G)V and $WAVb = (I G)V'b = (I G)Vb = (I G)(Va + X\beta) = (I G)Wa = (I G)Va$.
- (c) Let $Wa = Vb + X\beta$, X'b = 0. There $Va = VW^-Wa = VW^-(Vb + X\beta) = Vb + VW^-X\beta$. Therefore $Va Wa = VW^-X\beta X\beta \in \operatorname{im}(X)$ by the ULS-property.
- (d) If $\operatorname{im}(VW^-X) \subseteq \operatorname{im}(X)$, then, by Theorem 2.5, $V(X'^{-1}(0)) \subseteq W(X'^{-1}(0))$. On the other hand, from $\operatorname{im}(V-W) \subseteq \operatorname{im} X$ we get $X'^{-1}(0) \subseteq (V-W)^{-1}(0)$ and therefore Va = Wa if X'a = 0. Thus the coincidence of the BLUE's is evident.
- (e) If $P = XX^+$ is the projection on $\operatorname{im}(X)$, then from $\operatorname{im}(V W) \subseteq \operatorname{im} X$ it is obtained that P(V W) = (V W)P = V W. This shows V W =

 $P(V-W)P = XX^{+}(V-W)(X^{+})'X' = -X\Lambda X', \quad \Lambda = -X^{+}(V-W)(X^{+})' \text{ and } W = V + X\Lambda X', \text{ q.e.d.}$

4. Prediction. Consider the linear model

$$(4.1) E\left(\frac{y}{y_*}\right) = \left(\frac{X}{X_*}\right)\beta, Cov\left(\frac{y}{y_*}\right) = \sigma^2\left(\frac{V}{V_{12}'} + \frac{V_{12}}{V_{22}}\right),$$

y is observed, but y_* is unobserved and to be predicted. Consider a linear function $l'y_*$ which is predictable, i.e., $X_*'l \in \operatorname{im}(X')$. Then a'y is the Best Linear Unbiased Predictor (BLUP) of $l'y_*$ if

$$(4.2) X' a = (X_*)' l,$$

$$(4.3) Va - V_{12} l \in \operatorname{im}(X),$$

(Drygas [3], Toutenburg [23], Baksalary and Kala [1]). A solution of (4.2), (4.3) is e.g. given by

$$(4.4) a = G'(X^+)'(X_*)' l + (I - G)' V^-(V_{12}) l,$$

where Gy is a BLUE of $X\beta$ in the model $Ey = X\beta$, Cov y = V. If we replace V by a matrix W, n.n.d and symmetric, such that $\operatorname{im}(V_{12} - VW^- V_{12}) \subseteq \operatorname{im}(X)$, then in (4.4) V can be replaced by W. If, e.g., $\operatorname{im}(V - W) \subseteq \operatorname{im}(X)$, then $Wa - V_{12} l \in \operatorname{im} X$ implies $Va - V_{12} l \in (X)$. Since $\operatorname{im}(V_{12}) \subseteq \operatorname{im} V$, $\operatorname{im}(V_{12} - VW^- V_{12}) \subseteq \operatorname{im}(V - VW^- V)$; we arrive at a well-known condition.

If $X_* = TX$, then y_* is predictable and $G_1 y$ is BLUP of y_* iff $G_1 X = X$, $G_1 Vz = V'_{12} z$ if X'z = 0. A single-equation characterization is

$$G_1 W = X_* (X' W^- X)^- X)^- X' + V_{21} (I - W^- X (X' W^- X'))$$
 $(V_{21} = V'_{12})$

4.1. Theorem. (a) If $\operatorname{im}(VW^-X) \subseteq \operatorname{im}(X) \subseteq \operatorname{im}(W)$ and $\operatorname{im}((X_*)') \subseteq \operatorname{im}(X')$, then

(4.5)
$$G_1 y = X_* (X'(W^-)! X)^- X'(W^-)! y + V_{12} W^- (I - X(X'(W^-)! X)! X'(W^-)!) y$$

is BLUP of y_* iff $\operatorname{im}(V_{12} - V(W^-)'V_{12}) \subseteq \operatorname{im} X$.

(b) If im(X), $im(V) \subseteq im(W)$; $im(VW^{-}X)$, $im(V_{12} - VW^{-}X_{12}) \subseteq im X$ and

(4.6)
$$G_1 W = X_* (X' W^- X)^- X' + V'_{12} (I - W^- X (X' W^- X)^- X'),$$

then $G_1 y$ is BLUP of y_* .

(c) If $\operatorname{im}(X : V) = \operatorname{im}(W)$ and $\operatorname{im}(VW^- X)$, $\operatorname{im}(V_{12} - VW^- V_{12}) \subseteq \operatorname{im}(X)$, then $G_1 y$ is BLUP of y^* iff $G_1 W$ is given by formula (4.6).

For example if $G_1 y = X_*(X^-) Gy + V'_{12} Ay$, y' Ay BQUE of $f\sigma^2$, then $G_1 y$ is BLUP of y_* .

REFERENCES

- [1] J. K. Baksalary and R. Kala, Simple Least Squares Estimation versus Best Linear Unbiased Prediction, Journ. of Statist, Planning and Inference 5 (1981), p. 147-151.
- [2] H. Drygas, Zur Theorie der Gauss-Markoffschen Schätzungen, Ph. D. thesis, University of Heidelberg, 1968.
- [3] Estimation and prediction for linear models in general spaces, Math. Operationsf. und Statistik, 6 (1975), p. 301-324.
- [4] Sufficiency and completeness in the general Gauss-Markov model, Sankhya, A, 45 (1983).
- [5] F. A. Gray bill, and A. W. Wortham, A note on uniformly best unbiased estimators for Variance components, J. Amer. Statist. Assoc., 51 (1956), p. 266-268.
- [6] W. Kruskal, When are Least Squares and Gauss Markov Estimators identical? A coordinate-free approach, Ann. math. Statist. 39 (1968), p. 70-75.
- [7] S. K. Mitra, Unified Least Squares Approach to Linear Estimation in a general Gause-Markov model, Siam. Journ. of Appl. Math., 25 (1973), p. 671-680.
- [8] and B. Moore, Gauss Markov estimation with an incorrect dispersion matrix, Sankhyā, A, 35 (1973), p. 139-152.
- [9] S. K. Mitra and C. R. Rao, Further contributions to the theory of generalized inverse of matrices and its applications, Sankhyā, A, 33 (1971), p. 289-300.
- [10] Some results on Estimation and Tests, of Linear Hypotheses in the Gauss-Markoff Model, Sankhyā, A, 30 (1968), pp. 281-290.
- [11] Generalized Inverse of Matrices and its applications, Wiley, New York 1971.
- [12] J. Müller, Suffizienz und Vollständigkeit in linearen Modellen, Ph. D. thesis, Gesamthochschule Kassel, 1982.
- [13] C. R. Rao, Linear statistical inference and its applications, Wiley, New York 1965 and 1973.
- [14] Unified theory of linear estimation, Sankhya, A, 33 (1971), p. 477.
- [15] Some recent results in linear estimation, Sankhyā, B, 34 (1972), p. 369-378.
- [16] Unified Theory of Least Squares, Comm. Statist. 1 (1973), p. 1-8.
- [17] A note on the IPM method and the Unified theory of linear estimation, Sankhyā A, 34 (1972), p. 285 288.
- [18] Theory of Estimation of Parameters in the general Gauss-Markoff model in A survey of Statistical Design and Linear Models, J. N. Srivastava (Ed.), North Holland, Amsterdam 1973.
- [19] A note on the Unified Theory of Least Squares, Communications in Stat., A, 7 (5) (1978), p. 409-411.
- [20] Least Squares Theory for possible singular models, The Canad. Journ. of Statist. 6 (1978), p. 19-23.
- [21] J. Seely, A complete sufficient statistic for the linear model under normality and a singular covariance-matrix, Comm. Statist, A, 7 (1978), p. 1465-1473.
- [22] M.S. Srivastava and C. G. Khatri, An introduction to multivariate Statistics, North Holland, New York, Amsterdam (1979).
- [23] H. Toutenburg, Vorhersage in linearen Modellen, Akademie-Verlag, Berlin 1975.

Gesamthochschule Universität des Landes Hessen FB 17, Postf. 101 380 D-3500 Kassel, BRD

Received on 25. 4. 1983